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The Duffin–Kemmer–Petiau (DKP) equation for spin 0 and 1 with smooth potential and
position dependent- mass is solved. The solution is given in terms of the Heun function.
The step case for potential and mass are deduced as a limiting case. The boundary
conditions are also discussed.
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1. INTRODUCTION

The problem with position-dependent mass is of considerable significance
in various areas of physics, citing for instance quantum well and quantum dots
(Cassou et al., 2004; Harrison, 2000; Serra and Lipparini, 1997), semiconductor
heterostructures (Bastard, 1988; Gora and Williams, 1969), . . . etc. In addition to
its practical application, the quantum study of this problem requires some precau-
tions relative to the choice a correct form of the Hamiltonian. Accordingly, several
models were presented in which Hamiltonian is hermetic, the Galilean invariance
is preserved (Einevoll and Hemmer, 1988; Lévy-Leblond, 1995; Morrow, 1987;
Von Roos, 1983), . . . etc. In consequence, the treatment of the Schrodinger equa-
tion with position-dependent mass did not cease developing and a good number of
articles were published (Alhaidari, 2003; Chetouani et al., 1995, 1998, 1999; de
Sousa Dutra, 2003; Dong and Cassou, 2005; Lévy-Leblond, 1992; Mustafa and
Mazharimousavi, 2006a,b; Quesne, 2006; Quesne and Tkachuk, 2004; Tanaka,
2006).

However, the relativistic extension of this problem is also of interests and
remains unexplored. The major difficulty in this domain is the spin which is a
fundamental physical quantity, playing a significant role in the explanation of the
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microscopic phenomena and then its effect cannot be neglected. Consequently,
a detailed attention is drawn by a number of researchers to elucidate in this
case its physical influence. By the same time, this influence is concretized in
the development of the exactly soluble models. The analytical solution of these
models is then very required since it enables us to explore jointly relativistic and
spinor effects. In other way, when the spin value increases the problem becomes
more complicated because the number of coupled equations also increases. Some
problems were solved within this framework; for example, the Klein–Gordon
(KG) equation is exactly solved, with vector and scalar Hulthen-type potential
(Domingue-Adame, 1989), with Coulomb like scalar-plus-vector potentials (Chen
et al., 2004a), with vector and scalar exponential type potentials (Diao et al., 2004),
with scalar and vector Rosen-Morse-type potential (Yi et al., 2004) and with the
generalized Hulthen potential (Chen et al., 2004b) and for the Dirac equation, we
found the Coulomb problem (Alhaidari, 2004; Mustafa, 2003), the Kepler problem
(Vakarchuk, 2005) and a generalized Hulthen potential (Peng et al., 2006).

Besides these fundamental relativistic equations, there is another interesting
relativistic one, namely Duffin–Kemmer–Petiau (DKP) equation (Duffin, 1938;
Kemmer, 1939; Petiau, 1936). This latter describes jointly the dynamics of the
scalar and vectorial particles (spin 0 and 1). It is similar to that of Dirac, where
we replace the algebra of the gamma matrices by another algebra noted as beta
matrices. These latter last check a known more complicated algebra said DKP
algebra which has three irreducible representations: one-dimension trivial repre-
sentation, five dimension representation associated to spin 0 and ten dimension
representation associated to spin 1. In addition, this equation offers a revival in
the hope to find a positive density of probability for the particles with spin (Ghose
et al., 2001, 2003; Bonin et al., 2006) and also reveals a physical characteristic
which is the charge symmetry (Chetouani et al., 2004).

The purpose of this paper is to generalize our previous work (Chetouani
et al., 2004) by solving the one dimensional DKP equation for a system with
position-dependent mass in interaction with an external potential. For these mass
and potential, we consider the smooth shape. This choice of smooth potential
(Chetouani et al., 1995, 1998, 1999; Flugge, 1994; Merad et al., 2000; Peng et al.,
2006) (respectively, the smooth mass Baskin and Braginsky (1994)) has a physical
importance and especially by its limiting case; a step potential (respectively, a step
mass). As is well known, this limit plays an important role in various applications.
For example, in semiconductors physics, the potentials and effective masses are
often modeled by piecewise constant function: step, rectangular barrier, . . . etc.
(Cassou et al., 2004; Chen et al., 2006; Filikhin et al., 2004; Lévy-Leblond, 1992;
Rakityansky, 2004; Shi et al., 1997; Smagley et al., 2002; Zheng et al., 1997).

On the other hand, the naive treatment of the boundary conditions for this
step potential (and mass) brings us directly to the trivial solution. This difficulty
is avoided by taking the smooth potential (and mass) like starting potential (and
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mass). Consequently, the exact solution of this smooth potential (and mass) prob-
lem permits us to get the generalized adequate boundary conditions.

In Section 2, we expose an explicit calculation relative to the smooth potential
and mass in the case of spin 1. We reduce the problem to the Klein–Gordon
equation type with an additional mass-dependent term. The exact solution is
obtained. The wave functions are expressed by the Heun functions. The reflection
and transmission coefficients are evaluated. The limiting cases are considered and
the boundary conditions discussed. Following the same method we determine in
Section 3 the exact solutions of equation DKP in the case of spin 0 as a particular
case.

Before starting the resolution of the DKP equation, let us expose some useful
formulas. The one dimension DKP equation interacting with an electromagnetic
field and position-dependent mass is given by

[iβµ(∂µ + ieAµ(z)) − m(z)]ψ(z, t) = 0, (1)

with ∂µ = (∂0, ∂3), Aµ = (A0, A3), gµν = diag(+1,−1) and where m(z) = m0 +
S(z). The βµ are the DKP matrices and all their properties are listed in Chetouani
et al. (2004).

It is easy to show that we can obtain the following continuity equation

∂µJµ = 0, (2)

where Jµ ≡ ψβµψ and the adjoint spinor � is defined by

ψ = ψ+
(

2
(
β0)2 − 1

)
. (3)

Let us notice that the time-component J 0 of the conserved four-current Jµ is not
positive definite and may be interpreted as a charge density. It is remarkable to
note that this component is positive for positive-energy states and negative for
negative-energy ones (Guertin and Wilson, 1977).

In what follows, we are interested in the following choice of

A0(z) = V (z) = V0

2

(
1 + tanh

z

2r

)
, (4)

A3(z) = 0, (5)

m(z) = m0 + S(z) = m0 + S0

2

(
1 + tanh

z

2r

)
, (6)

where V0, S0 and r are suitable dimensional positive parameters.
The step potential is obtained by taking the limit r −→ 0, namely,

lim
r→0

V (z) −→ V0 θ (z) and lim
r→0

m(z) −→ m0 θ (−z) + (m0 + S0) θ (z).
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The stationary solution of Eq. (1) has the form ψ(z, t) = e−iEtφ(z) or equiv-
alently we have to solve the following eigenvalue equation

[
β0 (E − eV (z)) + iβ3 d

dz
− (m0 + S(z))

]
φ(z) = 0. (7)

2. SOLUTION OF THE DKP EQUATION FOR SPIN 1

The DKP equation, as a relativistic equation, is fundamentally related to that
of KG one (Lunardi et al., 2000; Nowakowski, 1998). With an aim of converting
the form of the problem to that of KG, let us introduce for the system Eq. (7) the
following decomposition. We write the wave function φ(z)T = (ϕ, A, B, C) with
A, B and C are vectors of dimension (3 × 1) as

�T = (A1, A2, B3), 	T = (B1, B2, A3), 
T = (C2,−C1, ϕ) and C3 (8)

where Ai, Bi and Ci , i = 1, 2, 3 are respectively the components of the vectors
A, B and C.

With these notations, it is not difficult to verify that only the components �

are independent and which obey the following Klein–Gordon type equation
{

(m0 + S(z))
d

dz

(
1

(m0 + S(z))

d

dz

)
+ [

(E − eV (z))2 − (m0 + S(z))2
]}

� = 0.

(9)
The other components are determined by the following constraint equations

(
	




)
=

⎛
⎜⎜⎝

(E − eV (z))

m0 + S(z)
i

m0 + S(z)

d

dz

⎞
⎟⎟⎠⊗ �. (10)

The component C3 automatically vanishes (C3 = 0).
Now, in order to solve the Eq. (9), let us introduce the change variable

y = 1

2

(
1 − tanh

z

2r

)
, (11)

where y vary in the domain ]0, 1[. The new form of the Eq. (9) will be written as

1

r2
y2(1 − y)2 d2�

dy2
+ 1

r2

[
y(y − 1)(2y − 1) − y2(1 − y)2

y − a

]
d�

dy

+ [E + m0 + (eV0 − S0) (y − 1)] [E − m0 + (eV0 + S0) (y − 1)] � = 0,

(12)

where a = m0+S0
S0

.
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This last equation can change to the following form

d2�

dy2
+
[

1

y
+ 1

y − 1
− 1

y − a

]
d�

dy
+ 1

y(y − 1)(y − a)

×
[
−ω2y + ν2 − µ2 + aω2 − aν2

y
+ (a − 1) µ2

y − 1

]
� = 0, (13)

with the following abbreviations

ν2 = r2[(m0 + S0)2 − (E − eV0)2],

µ2 = r2
(
m2

0 − E2
)
, and ω2 = r2

(
S2

0 − (eV0)2
)
. (14)

We note that this equation possesses singular points y = 0, 1, a,∞.

By means of the substitution � = yν(1 − y)µ�̃ this equation is reduced to a
Heun type equation (Erdélyi et al., 1955)

d2�̃

dy2
+
[

2ν + 1

y
+ 2µ + 1

y − 1
− 1

y − a

]
d�̃

dy
+ 1

y(y − 1)(y − a)

× [b + [(µ + ν)2 − ω2]y]�̃ = 0, (15)

with b = a[ω2 − (µ + ν)(µ + ν + 1)] + ν.
The regular solution at origin y = 0 of this differential equation is

�(y) = yν(y − 1)µ H (a, b; α, β, γ, δ; y)V, (16)

whose parameters are given by
⎧
⎪⎪⎨
⎪⎪⎩

α = ω + µ + υ

β = −ω + µ + υ

γ = 2ν + 1
δ = −1

(17)

where V is a 3 dimension constant vector and H (a, b; α, β, γ, δ; y) is the Heun
function defined par the series

H (a, b; α, β, γ, δ; y) =
{

1 − b

γ a
y +

+∞∑
s=2

csy
s

}
(18)

where the cs coefficients of the series are determined by the difference equation

(s + 2)(s + 1 + γ )acs+2 = {(s + 1)2(a + 1)

+ (s + 1)[γ + δ − 1 + (α + β − γ )a] − b}cs+1 − (s + α)(s + β)cs (19)

with the initial conditions c0 = 1, c1 = − b
γ a

and cs = 0 if s < 0.
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At this level, the components of 	T result directly. For those of 
T , we use
the following Heun property

(β − γ − δ)H (a, b + 1 − a + (a − 1)β + aα − aδ; α, β − 1, γ, δ + 1; y)

= (αy + β − γ − δ)H (a, b; α, β, γ, δ; y) + y(y − 1)
d H (a, b; α, β, γ, δ; y)

dy

(20)

By a straightforward calculation, it is easy to obtain the following final solution
⎛
⎜⎝

�

	




⎞
⎟⎠ = yν(y − 1)µ

× [H (a, b; α, β, γ, δ; y)M(y) + H (a, b + 1 − a + (a − 1)β

+ aα − aδ; α, β − 1, γ, δ + 1; y)N(y)], (21)

with M(y) and N(y) are nine component vectors defined as

M(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

E + eV0(y − 1)

m0 − eS0(y − 1)

−i [ω(y − 1) + µ]

r (m0 − eS0(y − 1))

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗ V and

N(y) =

⎛
⎜⎜⎜⎝

0

0

−i [ω − µ + ν]

r (m0 − eS0(y − 1))

⎞
⎟⎟⎟⎠⊗ V. (22)

In fact, the components of the vector V(i = 1, 2, 3, ) are the constants relative
to the three directions of the spin 1. Now, by returning to the old variable z (11)
and (21), we obtain the result⎛

⎜⎝
�

	




⎞
⎟⎠ =

[
1

2

(
1 − tanh

z

2r

)]ν [1

2

(
1 + tanh

z

2r

)]µ

× exp (iπµ)

[
H

(
a, b; α, β, γ, δ;

1

2

(
1 − tanh

z

2r

))
M(z)

+H

(
a, b + 1 − a + (a − 1)β + aα − aδ; α, β − 1, γ, δ
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+ 1;
1

2

(
1 − tanh

z

2r

))
N(z)

]
, (23)

with

M(z) =

⎛
⎜⎜⎜⎜⎜⎝

1

2E − eV0(1 + tanh z
2r

)

2m0 + S0(1 + tanh z
2r

)
iω(1 + tanh z

2r
) + 2µ

r
[
2m0 + S0(1 + tanh z

2r
)
]

⎞
⎟⎟⎟⎟⎟⎠

⊗ V (24)

N(z) =

⎛
⎜⎜⎜⎝

0

0
−2i (ω − µ + ν)

r
[
2m0 + S0(1 + tanh z

2r
)
]

⎞
⎟⎟⎟⎠⊗ V. (25)

Let us now pass on to a discussion of behavior of the wave function of smooth
potential and mass at ±∞. First, when z → −∞ (or y → 1), we have the limits

lim
y→1

yν −→ 1, lim
y→1

(y − 1)µ −→ exp (iπµ) exp (µz/r) , (26)

we use the property of the Heun function which links the y and 1 − y argument,

H (a, b; α, β, γ, δ; y) = D1.H (1 − a,−b − αβ; α, β, 1 + α

+β − γ − δ, δ; 1 − y) + D2.(1 − y)γ+δ−α−β

×H (1 − a,−b − αβ − (γ + δ − α − β)(γ +δ − aγ ); γ

+ δ − α, γ + δ − β, 1 + γ + δ − α − β, δ; 1 − y) (27)

with constants D1 and D2 are

D1 = H (a, b; α, β, γ, δ; 1), D2 = H (a, b − αγ [γ + δ − α − β] ;

γ + δ − α, γ + δ − β, γ, δ; 1) (28)

and H (a, b; α, β, γ, δ; 0) −→ 1, we get the following behavior of (23) for z →
−∞
⎛
⎜⎝

�

	




⎞
⎟⎠

z→−∞

→ exp (iπµ)

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

D1.e
µz/r + D2.e

−µz/r

E

m0

(
D1.e

µz/r + D2.e
−µz/r

)

iµ

m0r

(
D1e

µz/r − D2.e
−µz/r

)

⎞
⎟⎟⎟⎟⎠

⊗ V

⎤
⎥⎥⎥⎥⎦

. (29)

The value of µ in (14) is always an imaginary parameter with positive sign in the
interval m0 < E < +∞.
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Setting µ = irk1, with k2
1 = E2 − m2

0 where k1 is real positive

⎛
⎜⎝

�

	




⎞
⎟⎠

z→−∞

→ exp (−πrk1)

⎡
⎢⎢⎢⎢⎢⎣

D1

⎛
⎜⎜⎜⎜⎜⎝

1
E

m0

−k1

m0

⎞
⎟⎟⎟⎟⎟⎠

.eik1z + D2

⎛
⎜⎜⎜⎜⎜⎝

1

E

m0

k1

m0

⎞
⎟⎟⎟⎟⎟⎠

.e−ik1z

⎤
⎥⎥⎥⎥⎥⎦

⊗ V.

(30)

We notice that this expression composed of an incident wave being propagated
from −∞ and another reflected wave being propagated to −∞ conforming to the
physical problem.

For z → +∞ (or y → 0), we use the limits

lim
y→0

yν −→ e−νz/r , lim
y→0

(y − 1)µ −→ exp (iπµ) and

lim
y→0

H (a, b; α, β, γ, δ; y) −→ 1. (31)

Then the wave function (23) has the following behavior

⎛
⎜⎝

�

	




⎞
⎟⎠

z→+∞

→ exp (iπµ)

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1
E − eV0

m0 + S0

−iν

r (m0 + S0)

⎞
⎟⎟⎟⎟⎟⎠

exp (−νz/r)

⎤
⎥⎥⎥⎥⎥⎦

⊗ V. (32)

The value of ν change according to values of energy in the following intervals:

1) For eV0 + (m0 + S0) < E < +∞ , ν becomes purely imaginary with neg-
ative sign.

By setting ν = −irk2, with k2
2 = (E − eV0)2 − (m0 + S0)2 where k2

is real positive, we obtain a transmitted wave being propagated towards
+∞.

• If eV0 > 2m0 + S0 :
2) For m0 < E < eV0 − (m0 + S0), ν becomes purely imaginary with posi-

tive sign.
By setting ν = irk2, we obtain a transmitted wave being propagated

towards −∞ (change of the sign of the wave vector k2).
3) For eV0 − (m0 + S0) < E < eV0 + (m0 + S0) , ν becomes real with pos-

itive sign.
By setting ν = rK with K2 = (m0 + S0)2 − (E − eV0)2 where K is

real positive, we obtain an evanescent wave which decays exponentially.
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• If eV0 < 2m0 + S0 and for m0 < E < eV0 + (m0 + S0) , ν is real
with positive sign, we obtain also an evanescent wave.

We note here that for the choices of the signs which we have adopted follow
the convergence of the wave functions at ±∞ and the pairs creation phenomena.
For example, in the case, where ν = irk2, we take account of the discussion which
follows the appearance of the Klein paradox by supposing that the field is strong
enough at the point (z = 0). At this point, we have creation of particle-antiparticle
pairs. All incident and created particles move towards the left while antiparticles
move towards the right. Consequently, the conservation equation is violated and
implies that the reflection coefficient is higher than one (Durand, 1976).

Now, let us calculate the reflection and transmission coefficients along the
direction of the spin. Using the definition of the conserved quadrivector (2), in the
domain where, ν = ∓irk2 with µ = irk1, we find the expression of R as

R = | Jref |
| Jinc |

=
∣∣∣∣
H (a, b − αγ [γ + δ − α − β] , γ + δ − α, γ + δ − β, γ, δ; 1)

H (a, b; α, β, γ, δ; 1)

∣∣∣∣
2

. (33)

and T

T = | Jtr |
| Jinc |

= (a − 1)

a

|ν − ν∗| ∣∣exp
[− z

r
(ν + ν∗)

]∣∣
|2µ|

1

|H (a, b; α, β, γ, δ; 1)|2 . (34)

But in the domain where ν = rK is real, the value of T vanishes (T = 0),
Eq. (32) describes total reflection of the incident wave so that the coefficient of
reflection must become equal one.

Now it is interesting to study the following particular cases:

a) Smooth potential and null scalar potential (a −→ ∞ or S0 −→ 0)

For this purpose, we use the following lim it (Snow, 1952), which gives one
of the case where the Heun function degenerates into a hypergeometric function

lim
a→∞ H (a, al; α′, β ′, γ ′, δ′; z) −→2 F1

(
ζ +

√
ζ 2 + l, ζ −

√
ζ 2 + l; γ ′; z

)
, (35)

with

ζ = α′ + β ′ − δ′

2
.
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Applying this limit (35) for the Heun function contained in the expressions
of the reflection and transmission coefficients (33, 34), we find

lim
a→∞ R −→
∣∣∣∣∣∣

2F1(υ̃ − µ + 1
2 +

√
1
4 − e2V 2

0 r2, υ̃ − µ + 1
2 −

√
1
4 − e2V 2

0 r2, 2υ̃ + 1; 1)

2F1(υ̃ + µ + 1
2 +

√
1
4 − e2V 2

0 r2, υ̃ + µ + 1
2 −

√
1
4 − e2V 2

0 r2, 2υ̃ + 1; 1)

∣∣∣∣∣∣

2

(36)

lim
a→∞ T −→

|υ̃ − υ̃∗| ∣∣exp
[− z

r
(υ̃ + υ̃∗)

]∣∣

|2µ|
∣∣∣2F1(υ̃+µ+ 1

2 +
√

1
4 − e2V 2

0 r2, υ̃ + µ + 1
2 −

√
1
4 − e2V 2

0 r2, 2υ̃ + 1; 1)
∣∣∣
2

(37)

where υ̃2 = r2[m2
0 − (E − eV0)2], which are exactly the same result obtained in

Chetouani et al. (2004).

b) Step potential and null scalar potential (r −→ 0 and a −→ ∞)

We consider the limiting case when the smooth potential tends to step poten-
tial and we retain the constant mass, the limit of the reflection and transmission
coefficients can be deduced by taking account of the properties of a hypergeometric
function (Gradshtein and Ryzhik, 1965)

2F1(α, β; γ ; 1) = �(γ )�(γ − α − β)

�(γ − α)�(γ − β)
and z�(z) = �(1 + z) (38)

as follows
For E > eV0 + m0, υ̃ = −irk̃2 is imaginary, with k̃2

2 = (E − eV0)2 − m2
0

where k̃2 is real positive

R = (k1 − k̃2)2

(k1 + k̃2)2
, T = 4k1k̃2

(k1 + k̃2)2
, and R + T = 1. (39)

• If eV0 > 2m0 + S0 and for eV0 − m0 < E < eV0 + m0, ν = rK̃ is real
with K̃2 = m2

0 − (E − eV0)2 where K̃ is real positive.

R = 1 and T = 0. (40)
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• If eV0 > 2m0 + S0 and for m0 < E < eV0 − m0, υ̃ = irk̃2 is imaginary
with positive sign.

R = (k1 + k̃2)2

(k1 − k̃2)2
, T = 4k1k̃2

(k1 − k̃2)2
, and R − T = 1. (41)

We notice that R > 1, this anomaly is restored by the introduction of the
pair creation, which is the Klein’s Paradox.

Let us now determine the appropriate boundary conditions for the potential
and mass variable admitting a jump at an unspecified point z0. As it has been
said previously, the naive conditions of continuity lead directly to the trivial
solution (Chetouani et al., 2004). To find the adequate conditions, we proceed
in the following way. Let us start from � which satisfies the Klein–Gordon type
modified Eq. (9). Then, we must impose on it and on its derivative the continuity
conditions. By integrating the Eq. (9) in the domain [z−

0 , z+
0 ], one gets

�(z+
0 ) = �(z−

0 ),

1

m0 + S(z+
0 )

d�(z+
0 )

dz
= 1

m0 + S(z−
0 )

d�(z−
0 )

dz
(42)

Using these conditions we obtain

⎛
⎜⎝

�(z+
0 )

	(z+
0 )


(z+
0 )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0

0
(E − eV2(z+

0 ))(m0 + S(z−
0 ))

(E − eV1(z−
0 ))(m0 + S(z+

0 ))
0

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

�(z−
0 )

	(z−
0 )


(z−
0 )

⎞
⎟⎠ (43)

It is not difficult to check that in the case of step potential and mass conditions are
satisfied.

3. SOLUTION OF THE DKP EQUATION FOR SPIN 0

Let us proceed in the same way as in the case of spin 1, φ(z)T =
(η1, η2, η3, η4, η5), the system Eq. (7) is reduced to the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
(m0 + S(z))

d

dz

(
1

m0 + S(z)

d

dz

)
+ [

(E − eV (z))2 − (m0 + S(z))2]
}

η1 = 0

η2 = (E − eV )

(m0 + S(z))
η1

η3 = 0

η4 = 0

η5 = i

(m0 + S(z))

dη1

dz
,

(44)
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Following the same stages as in the preceding case, we arrive at the result

φ(z) = C

[
1

2

(
1 − tanh

z

2r

)]ν [1

2

(
1 + tanh

z

2r

)]µ exp (iπµ)[
2m0 + S0

(
1 + tanh z

2r

)]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
2m0 + S0

(
1 + tanh

z

2r

)]
H

(
a, b; α, β, γ, δ;

1

2

(
1 − tanh

z

2r

))

[
2E − eV0

(
1 + tanh

z

2r

)]
H

(
a, b; α, β, γ, δ;

1

2

(
1 − tanh

z

2r

))

0

0
[
iω(1 + tanh z

2r
) + 2µ

]

r
H

(
a, b; α, β, γ, δ;

1

2

(
1 − tanh

z

2r

))

−2i (ω − µ + ν)

r
H

(
a, b̃, α, β̃, γ, δ̃,

1

2

(
1 − tanh

z

2r

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

where b̃ = b + 1 − a + (a − 1)β + aα − aδ, β̃ = β − 1 and δ̃ = δ + 1.
It is noticeable that we obtain the same expressions for R and T respectively

given by (33) and (34).
The step potential and mass limit (r −→ 0) is

φ(z) → C. exp (iπµ)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ (−z)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

E

m0

0

0

−k1

m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D1.e
ik1z +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

E

m0

0

0

k1

m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D2.e
−ik1z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ θ (z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

E − eV0

m0 + S0

0

0

−k2

m0 + S0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eik2z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

with the same parameters µ, ν defined in (14).

4. CONCLUSION

We have solved the DKP equation (spin 0 and 1) with smooth potential
and mass. The DKP equation was reduced to Klein–Gordon type equation. The
resolution of the equation required the use of the Heun functions. The wave
functions, the reflection and transmission coefficients are then exactly evaluated.
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The generalized boundary conditions are deduced from the smooth potential (and
mass) study. The propagation through a jump of potential resembles the case of the
propagation of the photon through different mediums. This fact does not surprise
since the photon has a spin 1. The limiting cases are then deduced. The Klein
paradox is analyzed and it persists. Its solution found within the framework of
quantum field theory. This latter is due to the equivalence connecting the DKP and
KG formalisms.
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